Blog technologiczny Web-News.pl

Uczenie maszynowe

Początki uczenia maszynowego sięgają przełomu lat 50. i 60. Kluczowym momentem w rozwoju tej technologii było powstanie systemu eksperckiego Dendral na Uniwersytecie Stanforda, którego podstawowym zadaniem było ustalanie struktury molekularnej nieznanych chemicznych związków organicznych. Obecnie machine learning jest wykorzystywane w biznesie na szeroką skalę, m.in. do personalizacji ofert sprzedażowych czy identyfikacji nowych form kontaktu z klientami. Potwierdzają to dane SAS, z których wynika, że 68% firm postrzega uczenie maszynowe jako istotny trend technologiczny.

Maszyny uczą się dzięki algorytmom, czyli ciągom zdefiniowanych czynności niezbędnych do pozyskania danej wiedzy. Za każdym razem, gdy system zasilają nowe dane, prezentowane przez niego wyniki są coraz dokładniejsze. Uczenie maszynowe polega głównie na 4 działaniach:

Różne rodzaje uczenia maszynowego

Uczenie maszynowe nie jest jednolitą technologią. Sposób jej działania zależy w dużej mierze od tego, z jakich algorytmów korzysta i jakimi danymi zostanie zasilona. Eksperci SAS wskazują 4 podstawowe techniki uczenia maszynowego:

Przykłady zastosowania: zarządzanie ryzykiem; wykrywanie nadużyć; personalizacja interakcji; rozpoznawanie mowy, tekstu i obrazu oraz segmentacji klientów.

Przykłady zastosowania: analiza koszyka zakupowego, wykrywanie anomalii, rozpoznawanie podobnych obiektów.

Przykłady zastosowania: nawigacja (wybór trasy na podstawie informacji o natężeniu ruchu i warunkach na drodze), gaming (dostosowywanie scenariuszy rozgrywki do działań gracza), robotyka (dostosowanie pracy robotów do obłożenia i rodzaju wytwarzanego produktu)

Czego maszyna się nie nauczy?

Mimo ogromnych możliwości i ciągłego udoskonalania uczenia maszynowego, technologia ta ma pewne ograniczenia. Maszyna nie posiada umiejętności kreatywnego myślenia i nie przedstawi spontanicznie hipotezy bez odpowiednich danych. Ponadto nie będzie odbierać nowych, nieznanych bodźców. Każda zmiana danych wpłynie na pracę maszyny. Oznacza to, że można wpłynąć (celowo lub przez pomyłkę) na prezentowane wyniki, manipulując informacjami dostarczanymi do systemu.

Źródło: The Machine Learning Primer

Exit mobile version